Chess Bot Week 5

    Chess Bot Week 5

    Week 5 content of chess bot

    By AI Club on 3/19/2025
    0


    Week 5: Self-Play Training for Your Chess Bot


    This week, we'll focus on implementing self-play training to enhance your chess engine's capabilities. By having your bot play against itself, it can iteratively improve without requiring extensive human gameplay data.


    Project Overview


    This week, we'll implement self-play training to enable your bot to:


    -   Learn from games played against itself

    -   Automatically tune evaluation parameters

    -   Discover strong move sequences and strategies

    -   Build experience with varied positions

    -   Track improvements over time


    Understanding Self-Play Training


    Core Concept


    Self-play training is a technique where an AI plays against versions of itself to improve performance. This approach:


    -   Creates a closed feedback loop for continuous improvement

    -   Enables parameter optimization without manual tweaking

    -   Discovers new strategies automatically

    -   Has been fundamental to breakthroughs like AlphaZero and Leela Chess Zero


    Types of Self-Play Systems


    1.  Parameter Tuning

       

        -   Adjust evaluation weights based on game outcomes

        -   Fine-tune search depths for different game phases

        -   Optimize time management strategies

    2.  Learning Systems

       

        -   Record successful positions and moves

        -   Build position databases based on winning games

        -   Develop pattern recognition for tactics and strategies


    Implementing a Self-Play Framework


    ```python

    import chess

    import random

    import time

    import json

    import copy

    from board import ChessBoard


    class SelfPlayTrainer:

        def init(self, bot_constructor, games_per_iteration=50, iterations=10):

            """

            Create a self-play trainer for chess bots

           

            Args:

                bot_constructor: Function that returns a new ChessBot instance

                games_per_iteration: Number of games to play in each training iteration

                iterations: Number of training iterations to run

            """

            self.bot_constructor = bot_constructor

            self.games_per_iteration = games_per_iteration

            self.iterations = iterations

            self.best_bot = bot_constructor()

            self.game_history = []

            self.performance_history = []

           

        def train(self):

            """Run the complete self-play training process"""

            for iteration in range(self.iterations):

                print(f"Starting training iteration {iteration+1}/{self.iterations}")

               

                # Create challenger bot with variations

                challenger_bot = self.create_challenger()

               

                # Play training games

                results = self.play_match(self.best_bot, challenger_bot)

               

                # Analyze results

                analysis = self.analyze_results(results)

                print(f"Iteration {iteration+1} results: {analysis}")

               

                # Update the best bot if challenger performed better

                self.update_best_bot(challenger_bot, analysis)

               

                # Store performance metrics

                self.performance_history.append({

                    "iteration": iteration + 1,

                    "timestamp": time.time(),

                    "metrics": analysis

                })

               

            return self.best_bot

       

        def create_challenger(self):

            """Create a challenger bot with slightly modified parameters"""

            challenger = self.bot_constructor()

           

            # If our bot has tunable parameters, modify them slightly

            if hasattr(challenger, 'piece_values'):

                for piece in challenger.piece_values:

                    # Random adjustment between 95% and 105% of current value

                    challenger.piece_values[piece] *= random.uniform(0.95, 1.05)

           

            if hasattr(challenger, 'position_scores'):

                # Similar modifications for positional scores

                for piece in challenger.position_scores:

                    for i in range(len(challenger.position_scores[piece])):

                        challenger.position_scores[piece][i] *= random.uniform(0.95, 1.05)

           

            # Modify other parameters as needed

            return challenger

       

        def play_match(self, bot1, bot2):

            """Play a series of games between two bots"""

            results = []

           

            for game_num in range(self.games_per_iteration):

                # Alternate colors for fairness

                if game_num % 2 == 0:

                    white_bot, black_bot = bot1, bot2

                    color_map = {1: "bot1", -1: "bot2", 0: "draw"}

                else:

                    white_bot, black_bot = bot2, bot1

                    color_map = {-1: "bot1", 1: "bot2", 0: "draw"}

               

                # Play a game

                board = ChessBoard()

                moves = []

                result_code = self.play_game(board, white_bot, black_bot, moves)

               

                # Record result

                winner = color_map[result_code]

                results.append({

                    "game_num": game_num,

                    "winner": winner,

                    "moves": moves,

                    "result_code": result_code

                })

               

                if (game_num + 1) % 10 == 0:

                    print(f"Played {game_num + 1}/{self.games_per_iteration} games")

           

            return results

       

        def play_game(self, board, white_bot, black_bot, moves):

            """Play a single game between two bots, return the result code"""

            move_count = 0

            position_history = {}

           

            while not board.is_game_over():

                # Track positions for threefold repetition detection

                board_key = board.get_fen().split(' ')[0]  # Just piece positions

                position_history[board_key] = position_history.get(board_key, 0) + 1

               

                # Detect draws by repetition or 50-move rule

                if position_history[board_key] >= 3 or board.halfmove_clock >= 100:

                    return 0  # Draw

               

                # Get current bot's move

                current_bot = white_bot if board.turn == chess.WHITE else black_bot

                try:

                    move = current_bot.get_move(board)

                    if move:

                        moves.append(move)

                        board.make_move(move)

                    else:

                        # No legal moves (should be caught by is_game_over, but just in case)

                        break

                except Exception as e:

                    print(f"Error during move calculation: {e}")

                    # Forfeit the game if an error occurs

                    return -1 if board.turn == chess.WHITE else 1

               

                move_count += 1

               

                # Implement a move limit to prevent infinite games

                if move_count > 200:

                    return 0  # Draw by excessive moves

           

            # Determine game result

            if board.is_checkmate():

                return -1 if board.turn == chess.WHITE else 1  # Winner is opposite of current turn

            else:

                return 0  # Draw by stalemate, insufficient material, etc.

       

        def analyze_results(self, results):

            """Analyze the match results"""

            bot1_wins = sum(1 for r in results if r["winner"] == "bot1")

            bot2_wins = sum(1 for r in results if r["winner"] == "bot2")

            draws = sum(1 for r in results if r["winner"] == "draw")

           

            # Calculate performance metrics

            total_games = len(results)

            bot1_win_rate = bot1_wins / total_games

            bot2_win_rate = bot2_wins / total_games

            draw_rate = draws / total_games

           

            # Calculate average game length

            game_lengths = [len(r["moves"]) for r in results]

            avg_game_length = sum(game_lengths) / len(game_lengths) if game_lengths else 0

           

            return {

                "bot1_wins": bot1_wins,

                "bot2_wins": bot2_wins,

                "draws": draws,

                "bot1_win_rate": bot1_win_rate,

                "bot2_win_rate": bot2_win_rate,

                "draw_rate": draw_rate,

                "avg_game_length": avg_game_length

            }

       

        def update_best_bot(self, challenger, analysis):

            """Update the best bot if the challenger performed better"""

            # If challenger (bot2) won more than current best (bot1), adopt its parameters

            if analysis["bot2_win_rate"] > analysis["bot1_win_rate"]:

                print("Challenger performed better - updating best bot")

               

                # Copy challenger parameters to best bot

                if hasattr(challenger, 'piece_values') and hasattr(self.best_bot, 'piece_values'):

                    self.best_bot.piece_values = copy.deepcopy(challenger.piece_values)

                   

                if hasattr(challenger, 'position_scores') and hasattr(self.best_bot, 'position_scores'):

                    self.best_bot.position_scores = copy.deepcopy(challenger.position_scores)

                   

                # Copy other parameters as needed

       

        def save_best_bot(self, filepath):

            """Save the best bot's parameters to a file"""

            params = {}

           

            # Save piece values if they exist

            if hasattr(self.best_bot, 'piece_values'):

                params['piece_values'] = self.best_bot.piece_values

               

            # Save position scores if they exist

            if hasattr(self.best_bot, 'position_scores'):

                params['position_scores'] = self.best_bot.position_scores

               

            # Save other parameters

           

            with open(filepath, 'w') as f:

                json.dump(params, f, indent=2)

       

        def save_training_history(self, filepath):

            """Save the training history to a file"""

            history = {

                "performance_history": self.performance_history,

                "game_history": self.game_history[-100:]  # Save only the last 100 games to save space

            }

           

            with open(filepath, 'w') as f:

                json.dump(history, f, indent=2)


    ```


    ## Integrating Self-Play with Your Chess Bot


    Now let's enhance our ChessBot class to work with the self-play framework:


    ```python

    import chess

    import random

    import copy

    from board import ChessBoard


    class ChessBot:

        def init(self, depth=3):

            """Initialize your chess bot with tunable parameters"""

            # Parameters that can be optimized through self-play

            self.depth = depth

           

            # Piece values (can be tuned during self-play)

            self.piece_values = {

                chess.PAWN: 100,

                chess.KNIGHT: 320,

                chess.BISHOP: 330,

                chess.ROOK: 500,

                chess.QUEEN: 900,

                chess.KING: 20000

            }

           

            # Position bonuses for pieces (simplified, can be expanded)

            self.position_scores = {

                chess.PAWN: [

                    0,  0,  0,  0,  0,  0,  0,  0,

                    50, 50, 50, 50, 50, 50, 50, 50,

                    10, 10, 20, 30, 30, 20, 10, 10,

                    5,  5, 10, 25, 25, 10,  5,  5,

                    0,  0,  0, 20, 20,  0,  0,  0,

                    5, -5,-10,  0,  0,-10, -5,  5,

                    5, 10, 10,-20,-20, 10, 10,  5,

                    0,  0,  0,  0,  0,  0,  0,  0

                ],

                chess.KNIGHT: [

                    -50,-40,-30,-30,-30,-30,-40,-50,

                    -40,-20,  0,  0,  0,  0,-20,-40,

                    -30,  0, 10, 15, 15, 10,  0,-30,

                    -30,  5, 15, 20, 20, 15,  5,-30,

                    -30,  0, 15, 20, 20, 15,  0,-30,

                    -30,  5, 10, 15, 15, 10,  5,-30,

                    -40,-20,  0,  5,  5,  0,-20,-40,

                    -50,-40,-30,-30,-30,-30,-40,-50

                ],

                # Add more position scores for other pieces

            }

           

            # For storing opening book moves learned from self-play

            self.opening_book = {}

           

            # Transposition table for search efficiency

            self.transposition_table = {}

       

        def get_move(self, board: ChessBoard):

            """Given the current board state, returns the chosen move"""

            legal_moves = board.get_legal_moves()

            if not legal_moves:

                return None

           

            # Check opening book first

            book_move = self.get_book_move(board)

            if book_move and book_move in legal_moves:

                return book_move

           

            # If no book move, use minimax search

            best_move = None

            best_value = float('-inf')

            alpha = float('-inf')

            beta = float('inf')

           

            for move in legal_moves:

                # Try the move

                board.make_move(move)

               

                # Evaluate position after move

                value = -self.minimax(board, self.depth - 1, -beta, -alpha, False)

               

                # Undo the move

                board.undo_move()

               

                # Update best move if needed

                if value > best_value:

                    best_value = value

                    best_move = move

               

                # Update alpha for alpha-beta pruning

                alpha = max(alpha, value)

           

            return best_move

       

        def minimax(self, board, depth, alpha, beta, maximizing_player):

            """Minimax search with alpha-beta pruning"""

            # Check transposition table

            board_hash = self.get_board_hash(board)

            if board_hash in self.transposition_table and self.transposition_table[board_hash]['depth'] >= depth:

                return self.transposition_table[board_hash]['value']

           

            # Base case: reached leaf node or terminal position

            if depth == 0 or board.is_game_over():

                value = self.evaluate_position(board)

                # Store in transposition table

                self.transposition_table[board_hash] = {'value': value, 'depth': depth}

                return value

           

            legal_moves = board.get_legal_moves()

           

            if maximizing_player:

                value = float('-inf')

                for move in legal_moves:

                    board.make_move(move)

                    value = max(value, self.minimax(board, depth - 1, alpha, beta, False))

                    board.undo_move()

                    alpha = max(alpha, value)

                    if alpha >= beta:

                        break  # Beta cutoff

            else:

                value = float('inf')

                for move in legal_moves:

                    board.make_move(move)

                    value = min(value, self.minimax(board, depth - 1, alpha, beta, True))

                    board.undo_move()

                    beta = min(beta, value)

                    if alpha >= beta:

                        break  # Alpha cutoff

           

            # Store in transposition table

            self.transposition_table[board_hash] = {'value': value, 'depth': depth}

            return value

       

        def evaluate_position(self, board):

            """Evaluate the current board position"""

            if board.is_checkmate():

                # Checkmate is the worst possible outcome

                return -10000 if board.turn == chess.WHITE else 10000

           

            if board.is_stalemate() or board.is_insufficient_material():

                return 0  # Draw

           

            # Material count

            material_score = 0

            for square in range(64):

                piece = board.piece_at(square)

                if piece:

                    value = self.piece_values[piece.piece_type]

                    # Apply position bonus

                    if piece.piece_type in self.position_scores:

                        position_idx = square if piece.color == chess.WHITE else 63 - square

                        value += self.position_scores[piece.piece_type][position_idx] / 10

                   

                    material_score += value if piece.color == chess.WHITE else -value

           

            # Consider side to move

            perspective = 1 if board.turn == chess.WHITE else -1

            return material_score * perspective

       

        def get_book_move(self, board):

            """Get a move from the opening book"""

            fen = board.get_fen().split(' ')[0]  # Just position part

            if fen in self.opening_book:

                # Select from available book moves based on weights

                moves = self.opening_book[fen]

                total_weight = sum(weight for _, weight in moves)

                if total_weight <= 0:

                    return None

               

                # Choose move based on weight

                r = random.random() * total_weight

                cumulative = 0

                for move, weight in moves:

                    cumulative += weight

                    if r <= cumulative:

                        return move

           

            return None

       

        def update_opening_book(self, game_result, moves, color):

            """Update opening book based on game result"""

            # Only update book from winning games or draws

            if (game_result == 1 and color == chess.WHITE) or (game_result == -1 and color == chess.BLACK) or game_result == 0:

                # Replay the first 10-15 moves of the game

                board = ChessBoard()

                for i, move in enumerate(moves[:15]):  # Consider first 15 moves as opening

                    fen = board.get_fen().split(' ')[0]

                   

                    # Add move to opening book

                    if fen not in self.opening_book:

                        self.opening_book[fen] = []

                   

                    # Check if move exists in book

                    move_found = False

                    for j, (book_move, weight) in enumerate(self.opening_book[fen]):

                        if book_move == move:

                            # Update weight based on result

                            new_weight = weight + (5 if game_result != 0 else 2)

                            self.opening_book[fen][j] = (book_move, new_weight)

                            move_found = True

                            break

                   

                    if not move_found:

                        # Add new move

                        self.opening_book[fen].append((move, 10 if game_result != 0 else 5))

                   

                    # Apply the move to advance the board

                    board.make_move(move)

       

        def get_board_hash(self, board):

            """Get a hash of the current board position"""

            return board.get_fen().split(' ')[0]  # Just position part


    ```


    Running Self-Play Training


    Once you have your bot class and self-play framework set up, you can run the training process:


    ```python

    def main():

        # Function to create fresh bot instances

        def create_bot():

            return ChessBot(depth=3)

       

        # Create the self-play trainer

        trainer = SelfPlayTrainer(

            bot_constructor=create_bot,

            games_per_iteration=50,  # Play 50 games per iteration

            iterations=10            # Run for 10 iterations

        )

       

        # Run the training

        print("Starting self-play training...")

        best_bot = trainer.train()

       

        # Save the best bot's parameters

        trainer.save_best_bot("best_bot_params.json")

        trainer.save_training_history("training_history.json")

       

        print("Training complete!")

       

        return best_bot


    if name == "__main__":

        main()


    ```


    Strategic Considerations for Self-Play


    1.  Parameter Space Exploration

       

        -   Start with small variations to avoid diverging too much

        -   Gradually increase exploration as training progresses

        -   Focus on parameters with highest impact (piece values, positional scores)

    2.  Opening Book Development

       

        -   Start with empty book and build through successful games

        -   Weight moves by win percentage

        -   Maintain move diversity to avoid narrow repertoire

    3.  Computational Efficiency

       

        -   Use shorter games for early iterations (e.g., limit to 100 moves)

        -   Implement early termination in clearly won/lost positions

        -   Parallelize self-play games if possible

    4.  Learning from Failures

       

        -   Don't just keep winning strategies; analyze losses

        -   Identify common tactical mistakes

        -   Develop counter-strategies to previously successful approaches


    What to Get Done This Week


    1.  Set up a basic self-play framework:

       

        -   Implement the SelfPlayTrainer class

        -   Create a bot class that stores tunable parameters

    2.  Implement parameter variation and tracking:

       

        -   Add code to create challenger bots with varied parameters

        -   Track which parameter sets perform best

    3.  Run initial self-play iterations:

       

        -   Start with small training runs (10-20 games)

        -   Verify that parameter updates are happening correctly

    4.  Add opening book learning:

       

        -   Record successful opening sequences

        -   Build a database of promising first moves

    5.  Analyze and visualize results:

       

        -   Track bot improvement over iterations

        -   Identify which parameters have the greatest impact

    6.  Optional advanced features:

       

        -   Tournament-style evaluation between bot variations

        -   Parameter gradient estimation

        -   Advanced position evaluation learning


    Additional Resources


    -   [Chess Programming Wiki - Texel Tuning](https://www.chessprogramming.org/Texel%27s_Tuning_Method)

    -   [Self-Play Reinforcement Learning](https://medium.com/applied-data-science/how-to-train-ai-agents-using-self-play-for-multiplayer-games-applications-for-chess-35d3b1b91993)

    -   [AlphaZero's Approach to Self-Play](https://arxiv.org/abs/1712.01815)

    -   [Evolutionary Algorithms for Parameter Tuning](https://www.chessprogramming.org/Automatic_Tuning)


    Remember that self-play training requires patience, as improvement may be gradual. Start with small experiments and scale up as you confirm your approach is working. Next week, we'll explore endgame techniques and specialized evaluation to further enhance your chess bot's capabilities!

    Comments